
PVT Scaling Parameters for Polymer Melts. 
II. Error in All Variables 

BRUCE HARTMANN,*,' ROBERT SIMHA,' and ALAN E. BERCER' 

'Naval Surface Warfare Center, Silver Spring, Maryland 20903-5000, and *Case Western Reserve University, 
Cleveland, Ohio 44106 

SYNOPSIS 

An algorithm is discussed for determining best-fit scaling parameters in the PVT equation 
of state of polymer melts from experimental data. The underlying theoretical expressions 
are those employed in our preceding work. There it was assumed that values of pressure 
and temperature are known exactly and experimental uncertainty was admitted in the 
volume solely. This condition is now relaxed to allow for errors in P and T also. The 
methodology developed involves multiple small nonlinear fitting problems for two or three 
unknowns at  a time. We employ it on the experimental data base in the earlier work, which 
consists of 11 polymer melts. To these is added ethylene monomer, analyzed earlier by 
Nies et al. by different methods. The numerical values of the scaling parameters differ by 
a t  most a fraction of a percent from those in the earlier computations and enhance the 
accuracy of fit but slightly. The significant improvement over the consecutive procedure 
(analysis of atmospheric pressure isobar, followed by isotherms at  elevated pressures), seen 
earlier, continues therefore. The scaling parameters so obtained should represent the ul- 
timate in computational accuracy consistent with a specified experimental accuracy. This 
may have a bearing ultimately on the issue of modeling molecular characteristics, expressed 
through the scaling parameters, versus macroscopic properties. Using the parameters de- 
termined here, it is shown that the entropy is correlated with the scaling temperature and 
that the flexibility parameter is related to polymer complexity. 

INTRODUCTION 

Simha-Somcynsky ( S S )  scaled PVT theory' re- 
quires superposition of a theoretical pvp surface 
onto an experimental PVT surface, and the same 
procedure is required for other scaled equations of 
state as well. The original methodology simplified 
matters by employing a two-step procedure. The first 
step uses the atmospheric pressure isobar, yielding 
the scaling volume and temperature. Then, consid- 
eration of elevated pressure isotherms determines 
the scaling pressure P*. This usually requires av- 
eraging over P* values with a spread of a few per- 
cent. A detailed description is given in Ref. 2. This 
consecutive fit procedure, while operationally con- 
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venient, is inconsistent by giving undue weight to 
the atmospheric pressure data. 

Recently, the present authors computed the scal- 
ing parameters for a series of polymer melts using 
a simultaneous fit procedure that considers all the 
data.2 The new values of these parameters generally 
differed from the consecutive fit values by a few per- 
cent. However, there was a significant improvement 
in the quality of the predicted volume, often by a 
factor of two in ( I A V 1 ), the mean of the absolute 
value of the difference between the calculated and 
experimental volume. In the simultaneous fit, as 
with the consecutive fit, all of the experimental un- 
certainty is assumed to reside solely in the volume. 

This limitation is eliminated by a simultaneous 
inclusion of the whole PVT surface and the deri- 
vation of the scaling parameters by means of min- 
imum deviation methodology given explicit knowl- 
edge of the relative accuracy in the measurements 
of volume, pressure, and temperature. This ap- 
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proach, accounting for error in all the measured 
quantities, has been carried out for ethylene 
monomer3 and for polystyrene and other  polymer^.^ 

The purpose of this paper is to develop and apply 
a robust computational procedure that allows for 
stated experimental uncertainties in all three vari- 
ables of state. Besides providing a definitive insight 
into the quantitative performance of the theory, this 
procedure assumes an added importance in connec- 
tion with the thermodynamics of multiconstituent 
systems, including those with miscibility gaps, where 
there is high sensitivity to numerical parameter 
~ar ia t ion .~  

In the next section, we recapitulate the basic 
equations of the Simha-Somcynsky (SS) theory and 
the Bruce-Hartmann (BH) scaled equation of 
state.- Following this, our computational algorithm 
is described. Results for the 11 polymer melts and 
ethylene monomer considered in Ref. 2 are then 
presented. We conclude with a discussion of the 
findings. 

THE EQUATIONS OF STATE 

The SS equation is based on a lattice model, con- 
taining a fraction 1 - y of unoccupied sites or holes. 
In terms of reduced variables P, V, and ?, it has 
the form 

P V / F  = [l - Q]-' 

+ ( 2 y / P ) ( y V ) - 2 [ 1 . 0 1 1 ( y V ) - 2  - 1.20451 ( 1 )  

where Q = 2-1/6y(yV)-1/3.  The function y depends 
on volume and temperature in a manner determined 
by the principle of minimum free energy. The re- 
sulting equation is 

Here, s is the number of segments per chain and 
3c is the number of effective external degrees of 
freedom. 

The scaling parameters are related by the equa- 
tion 

where Mo is the molecular mass of the chain segment 
and R is the gas constant. This segment is defined 
by eq. ( 3 )  for a given numerical assignment to the 

ratio c/s.  For large chains and a homogeneous sys- 
tem, s tends to infinity and 3 c = s has been conven- 
tionally assumed. For finite chain lengths, as in 
oligomers or monomeric-type molecules, the pa- 
rameters s and c must also be specified. The preas- 
signment of a numerical value to s is one possibility, 
for example, s = 1 in the case of e t h ~ l e n e . ~  One may 
then consider c as a fourth parameter to be deter- 
mined. For short chains, 3c = s + 3 is the assignment 
consistent with that for the infinite chain. In any 
case, then, the determination of all parameters re- 
quires the inclusion of eq. ( 3 )  as an auxiliary con- 
dition to be satisfied. We note the relation sM0 
= nM,,,, where Mrep is the molecular mass of the 
repeat unit of the n-mer. For the infinite chain, Mo 
is directly determined. In other instances, it is elim- 
inated by means of this relation, and eq. ( 3 )  then 
becomes an auxiliary condition to be satisfied by the 
five parameters V*,  T*, P*, s ,  and c .  

We turn next to the BH equation of state: 

involving the scaling parameters Po, Vo,  and To.  
These scaling parameters have been determined with 
a consecutive fit method' and a simultaneous fitting 
procedure (with error in volume only) .2 

ERROR IN VARIABLES ALGORITHM 

We implement an error in all variables least square 
fit9-'' for obtaining P*, V*,  and T* using the fol- 
lowing procedures: Let current estimates for P*, V*, 
and T* be given. For each of the i = 1, . . . , N ex- 
perimental data points (Pi ,  Vi, Ti) with known 
standard deviations for the measurement errors 
ai (P) ,  a i (V) ,  and a i ( T ) ,  we find the square of the 
weighted distance between (Pi ,  Vi ,  T i )  and the SS  
surface, defined to be Dp, the minimum of the 
expression Sf in eq. (5) below over all ( P ,  V ,  T )  
values satisfying eqs. ( 1)  and ( 2 )  [ for "infinite 
chain" molecules, we set 3c = s and (s - l ) / s  = 1, 
whereas for our calculations with ethylene, we took 
s = 1 andc = P*V*/(2.964T*)],  

sp = ( P  - Pi)2/Ui(P)* + (V  - Vi)2/ 

u ~ ( V ) ~  + ( T -  T i ) 2 / ~ i ( T ) 2  (5) 

Let (Psi, Vsi , TSi)  denote the point on the SS surface 
where the minimum of Sp is attained. Define the 
sum of the squares of the weighted distances Di by 
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N 

SSQ = SSQ(P*, V*, T*) = 2 0; ( 6 )  
i= 1 

The error in variables least square fit values for P*, 
V*, and T* are, by definition, the (P*, V*, T*) 
triple for which SSQ attains its least value. Note 
that if for i = 1, . . . , N ,  a i ( P ) ,  ai(V),  and a i (T)  
are replaced by proportional values (i.e., they are 
all multiplied by the same constant), there is no 
effect on the (P*, V*, T*) triple that minimizes 
SSQ, so one only needs to know relative standard 
deviations to obtain P*, V*, and T*. 

The approach described above is somewhat dif- 
ferent from global Newton-type methods such as 
used by Britt and Luecke,' Lybanon," and Nies et 
al.3 for doing error in variables fitting. With the lat- 
ter approach, P*, V*, T*, and (Psi, Vsi, Tsi), i = 1, 
. . . , N ,  are all iterated simultaneously, in which case 
one may encounter severe difficulties in finding 
starting values with which convergence will be ob- 
tained. Our approach, described in detail below, has 
the substantial advantage that it breaks up this fit- 
ting problem into multiple small nonlinear problems 
(two or three unknowns at  a time) that can be solved 
without too much difficulty while using only mod- 
erate amounts of computer time. 

Given current values for P*, V*, and T*, for each 
of the i = 1, . . . , N experimental data points, we 
obtained (Psi , V,; , T,i) as follows: First, observe that, 
given values for V and T,  one can numerically solve 
the SS equations for P = P ( V, T ) by solving eq. ( 2 ) 
for y = y (  V, T )  to within 10-l' using the method of 
bisection; eq. ( 1 ) then determines P explicitly. Thus, 
Sp in eq. (5)  is reduced to a function of the two 
variables V and T: 

At the minimum of S: ,  one has zero values of its 
partial derivatives, viz. 

1 as: [PW, T)  - pi ]  a p  (v -  vi) 
2 av ai(P)2 av ai(V)2 

- -+  = o  

1 as: [P(v, T)  - pi]  ap ( T -  T ~ )  
- -+  = O  (8) 

2 aT ai(P)' d T  ~ri(T)' 

where partial derivatives with respect to V or T are 
assumed to be evaluated holding the other variable 
( T or V) constant. Given values for V and T (and 

values for P*, V*, and T* ) , one has y (V, T ) (ob- 
tained numerically), and by differentiating both 
sides of eq. ( 2 )  with respect to V and with respect 
to T,  one can (with routine algebra) find analytical 
expressions for dy/aV and dy/dT, respectively, in 
terms of V and T [and y = y ( V, T ) 1. Then, differ- 
entiating eq. ( 1) with respect to V and T produces 
analytical expressions for dP/dV and dP/dT in 
terms of Vand T [andy = y(V, T ) ] .  Thus, eq. (8) 
is effectively a system of two equations in the two 
unknowns V and T,  which we solved for Vsi and Tsi 
using a nonlinear equation solver (ZSPOW from 
the International Mathematical and Statistical Li- 
braries, Inc. [ IMSL] software library with eight sig- 
nificant digits requested). That the solution of eq. 
(8) thus obtained was indeed a (local) minimum of 
Se was checked by comparing with the value of Se 
at  a few nearby (V, T)  points. For any given values 
for P*, V*, and T*, the above approach provides a 
method for evaluating SSQ( P*, V*, T*). To obtain 
the (P*, V*, T*) minimizing SSQ, we employed 
the nonlinear least square fit routine ZXSSQ from 
IMSL (with five significant digits requested, EPS 
= DELTA = 0, IOPT = 1 ) . It should be emphasized 
that using this approach means that ZXSSQ is only 
searching for the three unknowns, P*, V*, and T*, 
while each of the N "inner" nonlinear problems to 
find V,i and Tsi [and Psi = P( V,;, Tsi) ] minimizing 
S:  involves only the two unknowns Vsi and Tsi. 

The values for P*, V*, and T* obtained by error 
in volume alone fitting' provided successful initial 
guesses for our error in variables fitting. The ex- 
perimental values Vi and Ti generally provided ad- 
equate initial guesses for V,i and T,i for the first 
time Se was minimized, i.e., eq. (8) was solved. 
Thereafter, the most recent values of V,i and Tsi 
were used [recall that each time ZXSSQ adjusts (P*, 
V *, T* ) , the values of Vsi and Tsi will change]. 
However, for atmospheric pressure data (Pi nomi- 
nally 1 bar), this was not always sufficient. Hence, 
for the first time eq. (8) was solved for a data point 
with Pi < 10 bar, and whenever convergence failed 
in ZSPOW, ST was evaluated at  each member of a 
56 by 50 rectangular grid of points (b, T k )  centered 
at  (Vi ,  Ti) with V-length 10ai(V) and T-length 
40ui(T) (the lengths were rather arbitrary). The 
initial guess then used for the solution of eq. (8) 
was the (V,, Tk) point in the grid for which Se had 
the least value. 

For the polymer data sets corresponding to Table 
I, atmospheric pressure data were taken at  ambient 
pressure rather than in a controlled pressure vessel, 
as was the case for the higher pressure data. We 
therefore took ai(P) to be 0.02 bar for the atmo- 
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spheric pressure data points, in consideration of the 
effects of local height above sea level and meteoro- 
logical variation [ ui (P) for the higher pressure data 
was typically 0.005 P i ] .  For example, a change in 
altitude of 700 feet (the approximate height above 
sea level of Cleveland, Ohio, where much of the data 
under consideration was taken) decreases the am- 
bient pressure by roughly 0.027 bar, and a modest 
change in barometric pressure of 0.4 in.Hg is equiv- 
alent to a change of 0.013 bar. For the polymers 
where convergence of our algorithm was also ob- 
tained using, for the atmospheric pressure data, the 
formula for ai( P )  given for the higher pressure data, 
there was no significant change in the resulting P*, 
V*, T*, and SSQ values (up to the number of sig- 
nificant digits reported in Table I) .  These values 
were also not significantly affected when u i ( P )  
= 0.04 bar was used for the atmospheric pressure 
data in several test runs. The special considerations 
required for the atmospheric pressure data have not 
been noted before and may explain why these data 
are the hardest to fit to theory." 

One essential test that we conducted on our com- 
puter code was to fix P*, V*, and T* values, take 
several ( Vi, Ti) values, and then use the SS equations 
to compute the corresponding Pi = P(  Vi, Ti) values. 
Initial guesses for the Vsi, Tsi, and P*, V*, T* were 
taken different from the predetermined exact values, 
and it was verified that our program effectively pro- 
duced the exact values. We also checked that the 

I I I I 

..... 389.961 
._... .... __.. __... _... 

0.99775335 V ' 0.99775485 

Figure 2 Contour plot of Si for the polystyrene data 
point Pi = 1 bar, Vi = 0.9980 cm3/g, Ti = 413.35 K, with 
P* = 6985 bar, V *  = 0.9628 cm3/g, T* = 12,788 K, ui(P) 
= 0.02 bar, q ( V )  = O.O004Vi, and a i ( T )  = 0.1 K. 

results in Table I were independent of the initial 
guess for ( P * ,  V*, T*). These error in variables 
runs generally took under 1 min of CPU time on a 
CDC 875 main frame computer compared with a 
few seconds for the error in volume only runs. 

If one examines contour plots of Si [ eq. ( 7) ]  as 
a function of V and T,  one finds that relative to axis 
systems where p (number of degrees K per unit 
distance along the Taxis of the plot/number of cm3/ 
g per unit distance along the V axis of the plot) is 
similar, the contour profiles of Si are much more 
eccentric for atmospheric pressure data points (cf. 
Figs. 1 [ p  = 22341 and 2 [ p  = 16001). It is well 
known that this can make the corresponding min- 
imization problem more difficult, so the necessity of 
resorting to preliminary searching through a table 
of values to obtain an adequate initial guess for VSi 
and Tsi for the atmospheric pressure data is not sur- 
prising. 

Fitting to the BH equation of state was accom- 
plished in a similar fashion, though the algorithm 
is less complicated due to the simpler form of the 
model. 

EVALUATION OF SCALING PARAMETERS 

0.974532 

Figure 1 Contour plot of Si for the polystyrene data 
point Pi = 200 bar, Vj  = 0.9739 cm3/g, Ti = 388.55 K, 
with P* = 6985 bar, V *  = 0.9628 cm3/g, T* = 12,788 K, 
q ( P )  = 0.005Pi, cri(V) = 0.0004Vi, and q(T) = 0.1 K. 
The dot is at  (Vi, T i ) .  

0.973269 v 
The polymer melt experimental data selected for 
analysis were all available in tabulated form, rather 
than only graphically or as the parameters of an 
equation such as the Tait equation or an interpo- 
lation polynomial. There was no selection of the 
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data; all the experimental values reported were en- 
tered into data files. The source for three polyeth- 
ylenes and three acrylate polymers are measure- 
ments of Olabisi and Sirnha.l3 The former are linear 
(LPE) , branched (BPE) , and high molecular weight 
linear polyethylene (HMWLPE) . The acrylates are 
poly ( methyl methacrylate) ( PMMA ) , poly ( cy- 
clohexyl methacrylate) (PCHMA) , and poly ( n -  
butyl methacrylate) ( PnBMA) . For polystyrene 
( PS ) and poly (0-methyl styrene ) ( PoMS ) , data 
were taken from Quach and Simha,'* and for 
poly (vinyl acetate) ( PVAc) , from McKinney and 
G01dstein.l~ For poly ( dimethyl siloxane ) ( PDMS ) , 
we have the observations of Kubota and Ogino16 
with room temperature as the reference state and 
those of Shih and Flow at room temperat~re. '~ The 
combination of information from two sources was 
unavoidable in this instance, due to the lack of suit- 
able tabulated data. Finally, there are the measure- 
ments on cis-1,4-polybutadiene (PBD ) by Barlow.'' 

For the first eight polymers discussed above, we 
used standard deviations equal to the measurement 
error bounds given in the experimental papers: ui (P) 
= O.O05Pi, ai(V) = 0.0004Vi, and ai(T) = 0.1 K. 
[ ai( P )  = 0.02 bar for atmospheric pressure data 
points for all eleven polymers.] For PVAc, ai(P) = 
2 bar, ai(V) = O.OOOOlVi, and a i (T)  = 0.25 K. For 
PDMS, a i (P)  = 0.005Pi, ai( V) = O.O002Vi, and 
ai( T) = 0.01 K, except that for atmospheric pressure 
data, ai( P) = 0.02 bar, CT~ (V ) = 0.0001 cm3/g, and 
ai(T) = 0.01 K. For PBD, ai(P) = O.OOIPi, a i (V) 
= O.OOIVi, and ai( T )  = 0.2 K. 

Values of scaling parameters for the SS equation 
are listed in Table I. For each polymer, three sets 
of scaling parameters are given. The first set of val- 
ues are the present calculations for error in all vari- 
ables, the second set of values is for error in volume 
only, and the third set of values is for the consecutive 
fit algorithm. For each set of scaling parameters, a 
measure of the quality of the fit is also given. The 
measure used is the sum of the squares of the di- 
mensionless distances from the experimental points 
to the Simha-Somcynsky theoretical surface divided 
by the number of experimental points. The quantity 
SSQ is the value being minimized by the algorithm 
used here. As such, it is smallest for the first set of 
scaling parameters. The error in volume only pro- 
duces slightly worse fits. (Note that the quality-of- 
fit parameter used in the previous paper2 was the 
average of the absolute value of the difference be- 
tween calculated and experimental volumes.) The 
consecutive fit procedure is significantly poorer than 
either of the simultaneous fit algorithms. 

Scaling parameters for the BH equation, for the 
same set of polymer melt data, are listed in Table 
11. As can be seen, the same qualitative behavior is 
observed here as with the SS equation. There is a 
small improvement in the quality of the fit using 
the error in all variables methodology compared with 
the error in volume only algorithm. The consecutive 
fit algorithm gives noticeably worse fits. The SS 
equation gives a better fit than does the BH equation 
in the majority of polymers, though both equations 
of state generally fit the data within the experimen- 
tal uncertainty of the measurements. 

Results for ethylene monomer are given in Table 
111. The data fitted were taken from Douslin and 
H a r r i ~ o n ' ~  in the region from 10 to 150°C and in 
the pressure range up to about 350 bar, a total of 62 
points. These data are near the critical region, where 
ethylene behaves more like a compressed gas than 
like a liquid. The standard deviations quoted by the 
authors for this system are ai( P) = 0.0006 bar, ai( V )  
= 0.0008Vi, and ai(T) = 0.0005 K. As compared 
with the Nies et al.3 results, we have a significant 
improvement. It is interesting that even though the 
SS and BH equations give almost identical results 
for a wide range of polymer melts, the BH equation 
cannot fit the ethylene data. Even though the BH 
equation works well for polymer melts and even for 
low molecular weight liquids 2o such as pentane, 
hexane, and heptane, the behavior of this gaslike 
material cannot be modeled by the BH equation. 
The SS equation, although not as accurate in this 
case as it is for polymer melts, still gives qualitatively 
acceptable results. 

Having best values for scaling parameters, we now 
reexamine two correlations previously reported 
based on consecutive fit parameters. The first cor- 
relation is between the natural log of the scaling 
entropy factor S* = P* V */ T* and the scaling tem- 
perature T*. Although this empirically observed 
correlation2' holds only within the T* range 9200 
K < T* < 13,000 K, the relation is of significant 
practical utility since one can estimate P* from 
knowledge of V * and T*. Hence, elevated pressure 
behavior can be predicted from atmospheric pressure 
measurements. Using the scaling parameters deter- 
mined here, the correlation is shown in Figure 3. 
The line is a least squares fit to the 10 polymer melts 
that fall within the T* range of validity. PDMS is 
not on the line since its T* = 4795 K. The line in 
Figure 3 is given by 

ln(P*V*/T*)  = 1.359 - 1.530 X 10-4T* (9)  
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Table I SS Scaling Parameters 

Polystyrene 

Poly(o-methyl styrene) 

Poly(methy1 methacrylate) 

Poly(cyclohexy1 methacrylate) 

Poly(n-butyl methacrylate) 

Polyethylene (branched) 

Polyethylene (linear) 

Polyethylene (high MW linear) 

Poly(viny1 acetate) 

Poly(dimethy1 siloxane) 

cis-1,4-Polybutadiene 

7157 
7155 
7453 

7503 
7499 
7458 

9292 
9291 
9147 

8039 
7994 
8382 

8272 
8234 
8456 

7015 
6979 
6946 

7773 
7788 
7478 

9027 
9041 
8968 

9470 
9467 
9380 

4795 
4774 
4739 

8266 
8256 
7714 

0.9626 
0.9627 
0.9598 

0.9790 
0.9793 
0.9762 

0.8363 
0.8363 
0.8370 

0.8985 
0.8993 
0.8906 

0.9341 
0.9346 
0.9299 

1.1626 
1.1639 
1.1600 

1.1397 
1.1399 
1.1417 

1.1282 
1.1287 
1.1285 

0.8129 
0.8132 
0.8141 

0.9579 
0.9584 
0.9593 

1.0749 
1.0751 
1.0861 

12,781 
12,791 
12,680 

12,922 
12,940 
12,740 

1 1,899 
11,900 
11,920 

11,701 
11,740 
11,290 

10,179 
10,200 
9,990 

10,234 
10,270 
10,140 

9,747 
9,750 
9,770 

9,195 
9,210 
9,205 

9,359 
9,380 
9,420 

7,840 
7,850 
7,870 

9,155 
9,170 
9,644 

0.9 
0.9 
3.7 

1.5 
1.5 
2.8 

0.2 
0.2 
0.7 

3.6 
3.6 
6.0 

3.8 
3.9 
7.5 

5.1 
5.2 
7.3 

2.8 
3.0 
6.1 

4.4 
4.5 
4.8 

1.2 
1.5 
1.8 

0.8 
1.0 
2.8 

0.1 
0.1 
0.5 

For each polymer, the first line is for error in all variables fit, the second line is for error 
in volume only, and the third line is for consecutive fit. 

with a coefficient of determination r 2  = 0.90. The line 
is in close agreement with the previous result:21 

procedure. A similar correlation is observed between 
In So = ln(PoVo/To) and To as shown in Figure 4. 
As before, PDMS is an exception. The line in Figure 

ln(P*V*/T*) = 1.319 - 1.493 X 10-4T* (10) 4isgivenbY 

which was based on fitting to a series that included 
not only polymers but also oligomers, and the scaling 
parameters were determined using a consecutive fit 

ln(PoVo/To) = 4.506 - 0.001075T0 (11) 

with r 2  = 0.88. 
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Table I1 BH Scaling Parameters 

Polystyrene 

Poly(o-methyl styrene) 

Poly(methy1 methacrylate) 

Poly(cyclohexy1 methacrylate) 

Poly(n-butyl methacrylate) 

Polyethylene (branched) 

Polyethylene (linear) 

Polyethylene (high MW linear) 

Poly(viny1 acetate) 

Poly(dimethy1 siloxane) 

cis-1,4-Polybutadiene 

29,800 
29,600 
28,900 

31,200 
31,000 
32,000 

38,500 
38,100 
37,900 

31,900 
30,900 
32,900 

32,000 
31,300 
32,900 

26,100 
25,400 
27,600 

28,300 
28,200 
28,700 

32,400 
32,300 
32,700 

38,200 
38,200 
38,800 

18,600 
17,900 
17,900 

34,400 
34,900 
31,000 

0.8724 
0.8742 
0.8683 

0.8858 
0.8878 
0.8788 

0.7567 
0.7581 
0.7539 

0.8156 
0.8215 
0.8038 

0.8494 
0.8537 
0.8390 

1.0567 
1.0635 
1.0456 

1.0341 
1.0361 
1.0294 

1.0222 
1.0241 
1.0189 

0.7367 
0.7369 
0.7349 

0.8690 
0.8749 
0.8650 

0.9797 
0.9788 
1.0003 

1574 
1591 
1540 

1579 
1596 
1523 

1454 
1466 
1430 

1446 
1490 
1366 

1265 
1291 
1208 

1265 
1293 
1221 

1196 
1203 
1179 

1123 
1129 
1112 

1150 
1151 
1139 

965 
989 
950 

1163 
1159 
1309 

2.4 
2.5 
16.8 

2.2 
2.3 
3.2 

0.4 
0.4 
3.6 

7.8 
9.1 
19.4 

19 
23 
43 

7.1 
7.9 
11.2 

1.1 
1.3 
1.5 

1.7 
1.9 
2.0 

1.3 
1.5 
2.3 

2.9 
6.6 
75.3 

0.1 
0.1 
1.7 

For each polymer, the first line is for error in all variables fit, the second line is for error 
in volume only, and the third line is for consecutive fit. 

The second correlation involves the flexibility s / n  = 3P*V * M,,,/RT* 
parameter s / n ,  which is the ratio of the number of 
effective segments to the number of repeat units in s / n  = S* Mre,/27.7 

the chain. Effective segments are determined by the 
number of effective external (i.e., volume-depen- 
dent) degrees of freedom and, hence, should be re- 
lated to the complexity of the repeat unit. From eq. 
( 3 )  and the relations 3 c  = s and sMo = nMrep pre- 
viously given, it follows that 

Values of Mo and s / n  for the 11 polymer melts are 
listed in Table IV, in order of increasing s / n ;  hence, 
presumably, in order of increasing molecular com- 
plexity. (Note that M,, here is the molecular weight 
of the polymer repeat unit rather than the average 
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Table I11 Simha-Somcynsky (SS) Scaling 
Parameters for Ethylene (High-Density Region) 

Nies et  al? This Work 

V* (cm3/g) 1.4647 1.4821 
T* (K) 3274 3369 

C 0.692 0.645 
s 1 1 

P* (bar) 4583 4345 

SSQ/N 44 22 

molecular weight per backbone carbon atom, as was 
previously reported.’*) We note that while the num- 
bers are somewhat different than before, the order- 
ing of the polymers is unchanged. Although the idea 
of polymer “complexity” is only qualitative, there 
does seem to be the expected increase from the sim- 
plest, polyethylene, to the polymers with the most 
complicated pendant groups: PCHMA and PNBMA. 

CONCLUSIONS 

Scaling parameters for 11 polymer melts and eth- 
ylene monomer have been determined using a si- 
multaneous fit algorithm that allows for experimen- 
tal error in all the experimental variables (pressure, 
volume, and temperature). The calculations were 
carried out for both the SS and BH equations of 
state. We conclude that 

The error in variables technique is the most 
accurate method of extracting scaling param- 
eters from experimental P V T  data. 

3.4 - 0 HMWLPE 

3.3 

3.2 

3.1 

- 
- 
- 
- 
- 
- 

Rfl(P*V*IT*) 
- 

- 
2.9 

2.8 

2.7 

- 
- 
- 
- oPDMS 
- 
- 

7 8  9 10 11 12 13 14 
f”/1000 K 

Figure 3 In (P* V */ T* ) vs. T* for polymer melts using 
parameters determined by the error in all variables al- 
gorithm. 

3.5 

3.1 

2.9 

Rn (Povono) 

oPDMS 

2.7 
9 10 11 12 13 14 15 16 17 

TdlOO K 

Figure 4 ln(PoVo/To) vs. To for polymer melts using 
parameters determined by the error in all variables al- 
gorithm. 

A particularly attractive algorithm for imple- 
menting this procedure has been developed that 
involves multiple small nonlinear fitting prob- 
lems, for two or three unknowns at a time. 
The scaling parameters found using the error 
in all variables algorithm differ by at most a 
fraction of a percent from the error in volume 
only algorithm. Hence, the error in volume only 
algorithm can be used if a difference of a frac- 
tion of a percent in scaling parameters is not 
significant, a simpler algorithm is desired, and/ 
or experimental uncertainties are not known. 

0 The difference between 1 bar and ambient 
pressure can be computationally significant. 
This may explain some of the problems others 
have had in fitting atmospheric pressure data. 
The predictions of the SS and the BH equations 
of state are close for polymer melts and low 

Table IV Flexibility Parameter 

BPE 
LPE 
HMWLPE 
PDMS 
PBD 
PS 
PMMA 
POMS 
PVAC 
PCHMA 
PNBMA 

28 
28 
28 
74 
54 

104 
100 
118 
86 

168 
142 

34.8 
30.5 
25.0 
47.3 
28.5 
51.4 
42.4 
48.7 
33.7 
44.9 
36.3 

0.80 
0.92 
1.12 
1.56 
1.89 
2.02 
2.36 
2.42 
2.55 
3.74 
3.91 
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molecular weight liquids but the SS equation 
is better in the vicinity of the critical point. 
The pressure scaling factor P* (or Po) can be 
estimated from the values of V *  and T* (or 
Vo and T o ) .  
The flexibility parameter increases with in- 
creasing polymer complexity. 

This work was sponsored by the Center’s Independent 
Research Program and the Office of Naval Research. 

REFERENCES 

1. R. Simha and T. Somcynsky, Macromolecules, 2,342 
( 1969). 

2. B. Hartmann, R. Simha, and A. E. Berger, J. Appl. 
Polym. Sci., 37,2603 (1989). 

3. E. Nies, L. A. Kleintjens, R. Koningsveld, R. Simha, 
and R. K. Jain, Fluid Phase Equilibria, 12,11(1983). 

4. E. Nies, A. Stroeks, R. Simha, and R. K. Jain, Colloid 
Polym. Sci., 268, 731 (1990); E. Nies, private com- 
munication. 

5. A. Stroeks and E. Nies, unpublished results. 
6. B. Hartmann, in Proceedings of the 22nd Canadian 

High Polymer Forum, University of Waterloo, Wa- 
terloo, ON, Canada, 1983, p. 20. 

7. B. Hartmann and M. A. Haque, J. Appl. Polym. Sci., 
30,1553 (1985). 

8. B. Hartmann and M. A. Haque, J. Appl. Phys., 68, 

9. H. I. Britt and R. H. Luecke, Techrwmetrics, 15, 233 

10. P. M. Reilly and H. Patino-Leal, Technometrics, 23, 

11. M. Lybanon, Am. J. Phys., 52 ,22  (1984). 
12. P. Zoller, quoted in B. Hartmann, J. Rheol., 30, 897 

13. 0. Olabisi and R. Simha, Macromolecules, 8 ,  206 

14. A. Quach and R. Simha, J. Appl. Phys., 42, 4592 

15. J. E. McKinney and M. Goldstein, J. Res. Natl. Bur. 

16. K. Kubota and K. Ogino, Macromolecules, 11, 514 

17. H. Shih and P. J. Flory, Macromolecules, 5 ,  758 

18. J. W. Barlow, Polym. Eng. Sci., 18, 238 (1978). 
19. D. R. Douslin and R. H. Harrison, J. Chem. Ther- 

20. B. Hartmann and E. Balizer, J. Acoust. SOC. Am., 82,  

21. R. Simha, Macromolecules, 10, 1025 (1977). 
22. 0. Olabisi and R. Simha, Macromolecules, 8 ,  211 

2831 (1985). 

(1973). 

221 (1981). 

( 1986). 

(1975). 

(1971). 

Std., 78A, 331 (1974). 

( 1978). 

(1972). 

modyn., 8 ,  301 (1976). 

614 (1987). 

(1975). 

Received March 14, 1990 
Accepted November 10, 1990 




